Statistical Procedures for Bioassays When the
Condition of Similarity Does Not Obtain

By C. PHILIP COX and PAUL E. LEAVERTON*

Well-established statistical procedures are available for the analysis of dilution
parallel line or slope ratio assays for which the condition of similarity obtains. Re-
search scientists have long been aware that this condition is commonly violated, in
log-dose response assays, for example, divergent rather than parallel lines may be
obtained. The deviation cannot always be traced to deficient experimental tech-
niques. In fact, as indications of differences in the response processes of the
standard and test preparations, or as indications of impure test preparations, such
findings may provide the most important inference from an assay experiment
and immediately suggest further investigation into the causes of the differences.
Statistical procedures have been developed to describe the phenomena in quantita-
tive terms and, especially, to permit potency comparisons. The procedures
may also have merit even in dilution assay situations where the condition of similarity
may apparently be violated if appreciable differences between the responses of
the standard and test preparations result from poorly matched doses.

TIIE TERM ‘‘analytical dilution assay’ refers

to an assay of a preparation of unknown po-
teney which can be regarded as nothing but a di-
lution of the standard preparation in a diluent
which docs not contribute to the response by
either chemical or physical properties. In such
cases it follows that when response is plotted
against log-dose the curves for the two prepara-
tions are the same apart from a constant relative
displacement parallel to the log-dose axis. TFur-
thermore, as was pointed out by Gaddum (1),
the relative potency estimate obtained from an
analytical dilution assay should not be dependent
on the particular assay circumstances. The
estimate should agree with one obtained by, for
example, chemical determinations since both
procedures should give estimates of the reciprocal
of the dilution factor.

When the log-dose response curves are straight
parallel lines well-established statistical pro-
cedures, such as those described by Bliss (2) and
Finney (3), are available for obtaining the rcla-
tive potency estimate. Estimation procedures
for quadratic parallel curves have been described
by Bliss (4) and Elston (5). Relatedly, Leaver-
ton (6) has discussed methods, based on tech-
niques described by Lewish (7), for fitting guad-
ratic curves constrained to be strictly mono-
tonic for use in bioassay contexts.

Similar statistical procedures arc used if parallel
log-dose response curves are obtained—for a
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particular response—even though the inert di-
luent assumption is not generally true. Such
assays have been termed “‘comparative assays.”
Since both types of assay involve comparative
experiments, however, there are grounds for using
the general term ‘‘assay” for either type when
distincetion is not essential, the qualification “‘ana-
lytical dilution” or just “dilution” being used to
distinguish the subclass of assays defined above.

As a prerequisite for estimation of relative
potency in the above cases, statistical analyses
incorporate tests for the relevance of the as-
sumed mathematical medel to the observed
phenomena. In particular, an index sensitive to
divergence, 7.e., to departure from parallelism,
can be obtained from the sum of squares for in-
teraction between preparations and log-doses in
the analysis of variance. In research, as distinct
from routine, bioassay situations it is usually not
possible to assert that an unknown preparation is
a dilution of the standard preparation; assays
may, in fact, be initiated to examine just this
question. As isolated from an animal or plant
organism, for example, the unknown preparation
may consist of a mixture of substances which
may affect the response in different degrees.
Accordingly, assay research workers, in pharma-
cology and endocrinology, for examples, have
long been aware that assays where divergent
rather than parallel lines are obtained are com-
mon, although the statistical significance of the
divergence term may occasionally be masked
because the assay is of low precision.

It should also be remembered that except in
the somewhat unusual casc that the log-dose
response relationship is exactly rectilinear over
a wide responsc range—as distinct from being
approximately straight locally—it is an event with
probability zero that doses will be so chosen to
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give exactly parallel lines even for an analyUcal
dilution assay.

One early idea on stalistical procedures ap-
propriate for divergent line assays was put for-
ward by Ing et al. (8), who suggested the com-
putation of an average relative potency deter-
mined over awide range of doses. Later, in Gibbs
et al. (9), an estimate of the logarithm of the rela-
tive potency was computed at the 509, response
level as a not strictly valid but nevertheless use-
ful comparison. Neither of these suggested
procedures, however, properly incorporate the
basic fact that the relative potency is different
for different doses or responses. And it was
pointed out by Grimshaw and D’Arcy (10) that
there was then no adequate method for quanti-
tative assessment in such situations.

Discussions of the above introductory points
and related statistical aspects may be found in
Thompson (11), Leaverton (G), Cornfield (12),
and Finney (13). In Cornfield (12), a procedure
is presented for estimating the logarithm of the
relative potency as a function of the log-dose in
cascs when linear log-dose response curves for
both preparations can be estimated for each of a
number of experimental subjects. Procedures
are given here for divergent line assays obtained
using the common experimental plan in which
only one preparation-dose combinution is ob-
served on each of a number of experimental
subjects.

SPECIFICATION

Let Xy and Xp denote log-doses of the standard
and test preparations, respectively, and let V
denote the response.

Then linear log-dose response lines can be written
as

{(Eq. 1)
(Eq. 2)

YV = as + 85Xs
V = ar + 8rXr

for the standard and test preparations, respectively.

The fact that, if 85 # B, the logarithm of the
relative potency is a function of the log-dose or the
response can now be cxpressed in any of the three
ways 4, B, and C described below.

A. Linear Relation Between Equipotent Log-
Doses.—If log-doses Xs and X¢ give the same
response, V, Egs. 1 and 2 show that Xy and Xy are
related by

as + BsXs = ar + BrXr

that is,

(s — ar)
Xs Bs T as T
B. Log (Relative Potency) as a Linear Function
of Log-Dose.—If u(X7) denotes the logarithm of
the reclative potency at dose X7, that is, p(Xyp) is
the difference between equipotent log-doses, we
have, at log-dose X,

br (q. 3)
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wXr) = Xy — Xy
so that, [rom Eq. 3,
(as — ar) (Gl _
Bs + Bs

C. Log (Relative Potency) as a Linear Function
of Response.—If u(}) denotes the logarithm of the
relative potency at response ¥V, u( V) is the difference
between equally effective log-doses so that,

w(Xr) = 1) Xr (Eq 4)

N Y—ay Y- oar
wr) = Bs Br (Eq. 5)
s (e _ary (1 1Yy e
- (BS 5?’) + (ﬁs Br ¥ (Eq. 6)

Prescntation of the relations has been made in
the above forin to give expressions which are
consistent with those obtaining in the usual parallel
line assay case when 8s = 87.  1n some applications,
however, predictions in terms of the test rather than
the standard preparation may be of interest.
For example, it may commonly be required to esti-
mate the log-dose, Xg, of the test preparation
which will give a response cquivalent to that ob-
tained with a specified log-dose, X, of the standard.
The ecxpressions above and their developments
below can readily be applied in such cases by
simply interchanging the sulfixes § and 7 so that
Eq. 3, for example, would give,

Br Bz

Choice between the various alternative expres-
sionts may, thercfore, be made according to the
practical requirements of particular situations.
Care, however, is required in any application be-
cause, apart from the simple indication that the
test preparation is not a dilution of the standard
preparation, the equations in themsclves cannot
readily be interpreted to give information about
modes of action in a context more general than that
of the particular assay. Thus, although Eq. 3
represents a calibration relationship between equi-
potent log-doses, it cannot be assumed that the
parameters in such a relation determined from once
laboratory species will remain constant for applica-
tion to another species. In the absence of informa-
tion about modes of action, thercfore, the relation-
ships should preferably be regarded as concise local
descriptions of the obscrved phenomena.  The re-
lations are, of course, applicable in repetitions of
the original assay circumstances of which accurate
and dectailed specifications are accordingly desirable.
This latter aspect is particularly important for
interlaboratory studics, as was recently emphasized
by Youden (14).

Xy = — (ar = ax) + Bs Xy

ESTIMATION

Estimation procedures for the above relation-
ships will first be considered for an assay in a com-
pletely randomized design in which one observation
is obtained from cach of N experimental subjects
and r responscs are observed at cach of ns log-dose
levels of the standard preparation and ny log-dose
levels of the test preparation, so that,

N = rins + nr) (Eq. 7)
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The assumptions will be made that (¢) the log-dose
response lines for each preparation are straight
lincs over the range of doses tested; (b) residual
errors are normally and independently distributed
with population mean zcro and variance o2, this
variance being the same for both preparations.
The following notation will be used:

S refers to the standard and 7" to the test
preparation,

x5 15 the sth log-dose valuc for S,7 = 1,2, ..., ng,

xjr isthejth log-dose valuefor T, 7 = 1,2, ..., 5,

viks and vy are the kth response observations at
the ¢th log-dose of .S and the jth log-dose of
T,k =12, ..r, and correspondingly

F:5 and 97 are the mean responses at these log-

doses.

By regression analyses described in standard
texts estimates, ag, bs, @r, and by, of the regression
paramcters, as, Bs, ar, and 87, in Eqs. 1 and 2 are
first calculated. Thus, for S, with

[

s = L " Eq.

xs s igl Xis (Eq. 8)
s ;s »

ys = — Vig = — s (Eq. 9

s = o ig Fis = o iz=:1 kglym (Eq. 9)

so that #s and ¥y are the means of the mean re-
sponses at the individual log-dose values, the esti-
mates are

ag = Y3 — bykg (Eq. 10)
ns
> (xis — E9)(Fis — Fs)
py=t=1 - (Eq. 11)
2 (wis — &)
i=1

In practice, of course, b will be calculated using the
well-known identity that for any number, #, of
pairs (x;, v;) with means & end ¥,

B — D5 = ) = By — 2O (Eq. 12)

The estimate s2 of the residual variance ¢? is cal-
culated by pooling the mean squares for deviations
from regression obtained from the two regression
analyses. This estimate will have N — 4 degrees of
freedom and is compounded from the deviations of
the mean responses at individual log-dose levels
and the deviations between individual responses
at cach of the log-dose levels, a procedure which is
valid under the assumptions (¢) and (&) above.

Estimates of the quantities defined in the Egs.
3, 4, and 6 above can now be calculated as follows.

Fron) Eq. 3, the estimate of the true value of

Xy is Xy where,
- 1
Xo=— b (¢s — ar — brX7) (Eq.13)

or cquivalently in terms of means as defined in
Eqs. 8and 9,

Xs— s = — L X
bs
{9s — 37 — br(X7 — %7)} (Eq. 14)
1 & -
= T e (s — Yr) (Eq. 13)
S
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Fig. 1.—The relation between equipotent log-doses.

where

I”;’I’ = Jpr + bp( Xy — Zp) (Eq. 16)

is the response predicted from the line for the test
preparation at log-dose Xy. A geometrical con-
struction which illustrates how the above quantitiAeS
are used to obtain the log-dose estimate 04 = Xg
from the specified value OB = Xy is given in Fig. 1.

Next from Eq. 4 M(X7), the estimate of u(X7) is
given by

1
M(Xr) = = 3 los —ar = (br — 05)Xr} (Eq.17)
which may alternatively be written as
M(Xr) = %s — Xo — i X
{§s — 97 — be(X7r — %2)} (Eq. 18)
=Xy — &7 — yib_ﬂ +
8§
1) (o - ) (Eq19)
s

Third, from Eq. 6 M(Y), the estimate of p( V) is
given by

1
IWI(Y) = — b@' X
{asbr — arbs — (br — bs)V]  (Eqg. 20)
or
M(Y) = xs — ¢ — —1——)(
TR T
{Vsbr — Frbs — (br — bs)V)  (Eq. 21)

INTERVAL ESTIMATION
OF THE EQUIPOTENT DOSE

Ry an adaptation of the procedure Fieller (15, 16)
for interval estimation from a ratio, a fiducial inteAr—
val will now be derived for the true value of Xg
calculated from Egs. 13 or 14 for a single specified
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X7 value. Tor this, Fieller’s argument can be ap-
plied to a variate constructed as

= asg + bsXs — ar — brXr (Eq. 22)
where Xg is the true or population value for the
log-dose of the standard preparation corresponding
to a log-dose X7 of the test preparation.

Under the stated assumptions, % is a linear com-
bination of the normally distributed variates as,
bs, ap, and by and so is itself normally distributed.
In virtue of Eq. 3 it is also true that the population
or expected value of % is zero. It follows that, if
the estimated variance of # is d,s2, where d, is a
known constant coeflicient determined by the con-
struction of x from the original observations, the
quantity «#%/d.s? is distributed according to the F
distribution with 1 and & — 4 dcgrees of freedom.

Hence, if F. is the tabulated value from this
distribution such that

PIFSF]=1-a

we have

942
%ZSFC:]:I*a

By Ficller’s theorem it now follows that solutions of

u? — Fdus? =0 (IEq. 23)
which from Eq. 22 is a quadratic equation in the
Xy corresponding to a given value of Xy, will give
values defining a 100(1 — «)%; fiducial interval for
the required X value.
To obtain d,, it is first convenient to write u
from Eq. 22 in the equivalent form,
u = 35 + bs(Xg — %) — ]
Jr — be(Xe — &r) (Eq. 24)
in which all the ecstimates are statistically inde-
pendent.  Hence,

Viu) = Vigs + bs(Xs — 7s)] +
Vigr + br(Xr — &r)]

which can be estimated as d.s? where

dus® =
1 ()(s — ﬁs),z, 1 (XT — .)?7‘)27:| 52

ng = rZ{xg — £5)? 0 mr  rZ(xr — &p)t
(Eq. 25)
It is now convenient to introduce a more concise

notation, wherein a prime is used to denote values
“carrected for their means.” Thus, we write

}&’s/ = Xg— xg, X¢' = X7 — xXr (Eq. 26)
and
ng nr
5 =7 Z (x5 — &8)%, Zo' =7 Z X
1 1
(xj7 — 27)? (Eq. 27)
Then, from Eqgs. 24 and 25
u =95 — Jr + bsXs' — brXy' (Eq.28)
and
b1 X X
d, = o + b + o + Y (TLg. 29)
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Inserting these values into Eq. 23 and collecting
terms then gives the gquadratic equation for the
unknown Xg’ as,

AXs" +2BXy + C =0 (Eq.30)
where
F.s2
4 = 2 o
4 = bg 5 (Eq. 31)
B = bsi{¥s — 5r — brX7'}  (Eq. 32)
= bs(3s — T2) (Eq. 33)

from Eq. 16, and
C = (s — Fr — brX¢')? —
1 1 XT’Q)
2 i p—— e
Fes i + o + o0 (Eq. 34)
By the usual formula for the roots of a quadratic

equation the lower and higher limits, X gz and Xgg,
of the fiducial interval are then given by

—BF VB — AC

Xsi/, Xsu' = y (Eq. 35)
that is,
1 -
Xso = w5 — {B+ B — AC},
1 o
Xsn = 35 = — {B - ~/B*Z AC} (Eq.36)

In practice, the computations can be simplified
by first calculating the quantity )E'S’ = X:s — X3
from the point cstimate JA(S of the equipotent dose,
Then, substituting —bs)z'g’ for 3¢ — 7 — brXo'
in Eqgs. 32 and 34 leads {o an cxpression for the
interval as,

1
Xsi', Xgn' = — [b,s'2Xs' F
A
(L L e
VF”S ?A ns + nr + ET')

By analogy with the wusual calculations for
parallel line assays [Finney (3)], an approximate
formula, which is often sufficiently accurate, can
now be easily obtained. For this we note that the
quantity s2/Zg’ in Eq. 31 is the variance of bg,
and, if bg? is very much larger than its variance,
i.e., if the square of the cocfficient of variation of
bs is very small, we have, from Eq. 31

F.s?
= 2 P
A bs (1 1)522.9’)

~ phg?

b,sz“fsﬁ%g]
+ Zg'

(Eq. 37)

As an empirical working rule, following TFinney
(3), it may be suggested that the approximation will
give sufficiently accurate results if A/bs® > 0.95,
or, equivalently, if 20 F, < bg2Zs’/s?.  In such cases
it can ecasily be checked that the fiducial interval
defined above becomes,

X, Xon = Xs F
F? /1 N
\/ (11, X__1,> (Eq. 38)

bs? \ng nr Zr
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TasLE I —TOUR-POINT AsSAY OF LUTEINIZING
HORMONE IN SWINE PITUITARY TISSUE BY ASCORBIC
Acip DErLETION METHOD

~ Standard (N.L.II.)— Test:
0. 0.0625 mg. 0.2500 mg.

4 myg. 1.6 mg.

77 55 64 60

81 45 71 54

80 47 70 54

78 52 80 61

80 48 72 54
Total 396 247 357 283
Mean 79.2 49.4 71.4 56.6

The fiducial intervals calculated as above apply

when the X value corresponding to only one Xp
value is required. Commonly, however, the pro-
cedure may be required for an unspecificd number
of X7 values. The theoretical treatment by Scheffé
(17) then indicates that the interval should be
calculated by substituting for F,, as defined above,
the value 4F. where F.’ is the tabulated value
from the F-distribution with 4 and N — 4 dcgrees
of freedom such that,

PIFLF/ ] =1~u«
EXAMPLE

The data in Table I were obtained from a four-
point assay of luteinizing hormone (LH) in
swine pituitary tissuc [Melampy and Hendricks
(18)] by the ascorbic acid depletion (AAD) method.
The responses arc in units of meg. AAD/100 mg.
rat ovary tissue.

When the doscs are, as here, conveniently chosen
so that the ratio of the higher to the lower dose is
the same for both preparations, the log-dose trans-
formations can be chosen to give a log-dose mcta-
meter which takes simple integral values, Thus,
in Table I, where the dose-ratio is 4, the transforma-
tions from doscs zs and z7 to metameters xg and
x7 such that,

1 ]
s = fog 4 {log 55 — log 0.4} (Eq. 39)
xp = fog 4 flog zr — log 0.06256} (Eq. 40)
give xg = x7 = 0 at the two lower doses and

xs = x7 = 1 at the two upper doses.
‘The usual assay analysis of variance then gives:

Mean
d.f. Squares
Between preparations. . ....... 1..... ... 0.45
Common regression., . ........ 1...... 2486.45
Divergence. ... .............. T....... 281.25
Residual. ... ............... 16........ 16.15
Since the &« = 0.05 critical F-valuc for 1 and 16

degrees of freedom is 4.49 it can be seen (a) from
the between preparations term that closely similar
response levels were achieved and (b) from the
divergence term that the slopes of the regression
lines for the standard and test preparations were
significantly different.

We are thercfore in a situation for which the
preceding procedurcs arc appropriate with n#g =

Journal of Pharmaceutical Sciences

np = 2 doses for each preparation and r = 5 re-
sponses at each preparation-dose combination.
Conventional regression calculations, as indicated
by Egs. 8, 9, and 11 and similar equations for the
test preparation, then give

&g = %r = 1/

and
¥s = (396 + 247)/10 = 64.3
Jr = (357 4+ 283)/10 = 64.0

Again, from Eq. 27

3 =2 =5 (3 +31) =1

and it follows from Egs. 11 and 12, or because the

interval between the two values of xg is unity, that
by = —(79.2 — 494) = —2938

and similarly,
by = —(714 — 56.6) = —14.8

The cquation for the prediction of an Xg value
corresponding to a specified X7 value can now he
written down from Eq. 14 as

N 1 1 , 1
Xs = 5 =555 1043 — 640 + 148 (XT - E)g
1 -
= m (—I.] *I* 14.8 X’I‘)
that is,
X5 = 026 + 0.50 X7 (Eq. 41)
With F, = 449, for « = 0.05, and s* = 16.15

o

o5 ER0-

14,8 %y

60 -

response

30 [~
L L
T I 0734 0.43 0. 72 T.o
. '
———interval estimule———_n? Tog-dose

Fig. 2.—Assay of LH in swine pituitary tissuc (18).
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(16 d.1.) the fiducial interval can now be calculated.
For this, from Eq. 31,

A 29.8° — L (4.49)(16.15)

)

888.04 — 29.01
8569.03

Hence, from Eq. 37
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for a constant number 7 of response observations at
cach preparation-dose level combination. The ex-
tension to the uncqual numbers case readily follows,
mulatls wutandis, using the standard statistical
procedures for dealing with unequal numbers in
single classification cxperiments. Additionally, as-
says based on designs other than the completely
randomized design can be treated by the basic
techniques described above.

Xsi', Xsu' = 85903

= 10355 + V0.0844 (1 + 0.40 X' + 042 X5')
(Eq. 43)

Now, in particular, suppose it is desired to
estimate the dose of the standard preparation

equivalent to 0.1 mg. of the test preparation.
First, from Eq. 40, the spcecified value of X7 is

1
(p = —— {log 25} = 0.33¢
Xr = (g Hog 0.1/0.0625) = 0.3390

Hence, from Eq. 41,

Xg = 0.26 + (0.50)(0.3390) = 0.4295
and, from Eq. 39,
log(zs/0.4) = 0.4295 log 4

from which the estimated equipotent dose is

Zg = 0.73 mg.

Noting that X¢' = 0.3390 — 0.50 = —0.1610
and Xg’' = —0.0705, the corresponding 957 fiducial
interval is obtained from Eq. 43 as,

Xse!, Xsu' = —(1.03)(0.0705) =+
4/0.0844 {1 + (0.40)(0.1610?) +0.42(0.0705)?}

= —0.365, + 0.220
From Egs. 26 and 39 the interval lor the equi-
potent dose can then be calculated as
Zsi, Zsy = 048, 1.09 mg.

Alternatively, since for these data A/bs® = 0.97,
the approximate formula in Eq. 38 may be used to
give,

Xse, Xsu = 042095 =

(4.49)(16.15)
29.8

(1 +04X7?)

i

0.14, 0.72

and on subtraction of £3 = 0.5, values arc obtained
which closely agree with those obtained above for
‘Xs[,' and XS[{’.

The results are illustrated in Fig. 2. In this the
width of the interval estimate serves to emphasize
the fact that an cxperiment designed to give suffi-
cient precision for a parallel line assay will give
poor precision for an estimate of an eqguipotent dose
if divergence has to be admitted as the more realistic
situation.

For simplicity of exposition, the above develop-
ment and the example have been curried through

. B 2X 7' 2(29.8%) o
[29.82;(5' ?'—‘\/(4.49)(16.15) %8591)3 (é + % 4 2z ) L+ A 28) Xsfzg]

5

(Eq. 42)

QUADRATIC RESPONSE CURVES

The principles deseribed above are also applicable
when one or both of the log-dose response relation-
ships can be described by quadratic curves about
which the responses of individual experimental
units are normally distributed. As expected, how-
ever, more computation is required.

If the two quadratic relationships are

Fs = as + bsXg 4 s Xs? (Eq. 44)

and

Vr = ar + brXr 4+ crXo? (Eq. 45)
the log-dose of the standard preparation equivalent
to a specified log-dose Xy of the test preparation
can be estimated as one solution of the quadratic
cquation,

csXs? + bsXs + ag —
ar — bTXT — cp X2 =0 (Eq. 46)

Identification of the appropriate root can be made
without difficulty becanse the two dose-response
curves must be monotonic (though not necessarily
in the same sense) in the region of interest and be-

cause the specified X¢ and its correspondent Xy
should be within the dose ranges over which the
curves themselves werce estimated,

In many practical cascs cxtreme accuracy will
not be required of such estimation procedures and,
particularly if numerous cquipotent doses are re-
quired, it may be more convenient to read them
fromm graphs of the two curves.

Fiducial intervals for the estimate defined in
Eq. 46 can also be obtained on the above principles
as the appropriate solutions of Eq. 23 with # equal
to the expression on the left of Eq. 46.  Solution of a
fourth degree cquation is required in this casc.
The interpretation of solutions of quartic cquations
in a similar inverse estimation problem has been
discussed by Williams (19).

RELATIVE POTENCY
AS A FUNCTION OF DOSE

Divergent line assays may oceur in some contexts
where it may be of interest to estimate the relative
potency itself, although this guantity is now of
more restricted use than in the simple case when it is
constant. For example, if we now find that 1 mg.
of the test preparation is equipotent to p(1 mg.)
of the standard preparation it is no longer true
that 1 Gm. of the test and 1000p(1 mg.) of the
standard preparations are equipotent.
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When, however, the relative potency itself is
required it can be cstimated as a function of log-
dose from Eq. 19. Since u(Xr) = Xy — Xr, where
Xs i1s the equipotent log-dose of the standard
preparation, an interval estimate for u(X'r) can he
obtained by subtracting Xy from the interval
estimate previously determined for Xg. Alterna-
tively, we may proceed directly by applying Ficller's
procedure, vie Eq. 23 with

= by{u(Xr) — &5 + &2} +

(s — F7) — (br — bs)X7' (Eq. 47)
As aresult if, for convenience, we write A = p(X7) —
Xs + %r the interval can be determined by adding
(Xs — Xr) to each root of the quadratic equation

AX2 42BN + C = (Eq. 48)

where
F,s?
—_ 2 4
A = bs 5 (Eq. 49)
- - Fs?

B = —bs* {M(X7) — &5 + %1} + Sy (Bg. 50)
C =bs* {M(Xr) — %5 + %r}% —

Fat 10+ 4 X
ns nr

211) % (Eq. 51)

RELATIVE POTENCY
AS A FUNCTION OF RESPONSE

The point estimate M(Y) of u( V), the log relative
potency at response Y can be calculated from Eq.
21, but cxact interval estimation is not so straight-
forward as in the previous cases. In many practical
cases, however, it will be sufficient to use approximate
fiducial intervals which can be obtained as follows.

It is a well-known result that, if

un
=2
v
is a ratio of two variates, # and », which are statis-
tically independent, and if the cocfficient of varia-
tion of the denominator, », is small, then

(coefficient of variation of 7)?
= (coefficient of variation of u)?

+ (coefficient of variation of )2 (Eq. 53)

That is, if d.s? and d,s? are the estimated variances
of u and v, respectively, V(r), the estimated variance
of the ratio is given by,

Vir) = ris? (%; + &

To apply this in the present context we have,
from Eq. 21

M(Y) — %5 + xp =
3(1 —Fs) (Y — 3r)
bs br

(Bq. 54)

E (Eq. 55)

The difference between two independent ratios
appears on the righthand side and hence

VIM(Y) — 55 + 1) =
P (557) +v(F5) mam

and now, applying Eq. 54
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The variance of (¥ — §7)/br can be similarly
calculated and, on the assumption that the quantity
M(Y) — s + %rin Eq. 55 is normally distributed,
the approximate fiducial limits of x(V) are then,

pi(Y), pu(Y) = &5 — %r F

1 1 (Y — 35)° (Y—M)Zs
2 - -
AJFCS 371,3 + ny + 55225' + bTZET/ )
(Eq. 58)

SLOPE RATIO ASSAYS

Suppose that the two dose-response lines in a
slope ratio assay are

Vg = as + bszs
Yy = ar + brzr

where zg and zr represent doses, and the intercepts
ag and ar are estimates of the parameters as and ar
and, instead of ag being equal to ar as in the regular
slope ratio assay case, we now have as # ar.
The dose Zg which is cquipotent with a specified
dose Zr7 of the test preparation is then estimated as

1
bs

(Eq. 59)

Ly = — (es — ar — brZr) (Eq. 61)

It can now be seen that this is dircetly analogous
to Eq. 13 for the previous case, except that we
now have doses Zs and Zp instead of log-doses
Xg and X7, so that mufatis mutandis, the above
procedures can readily be applied in slope-ratio
assay situations.

DISCUSSION

Finney (1965) has recently given an intcresting
general discussion of the role of the concept of con-
stant relative potency, or equivalently of the con-
dition of similarity, in bioassay. It should bc
noted that the estimation procedures in the present
paper are referred to situations when the condition
of similarity does not obtain. Such situations are
common in research situations for which the con-
dition would often be an unrealistically ideal assump-
tion.

Relatedly, although techniques have been pre-
sented for estimating relative potency as a function
of dose (concentration) or response, it is considered
that these are of less importance and value than
those described for the estimation of equipotent
doses. It is suggested that this latter is the more
basic concept for bioassay in general because, even
when relative potency is constant, applications of its
cstimation are often, in effect, made toward de-
terminations of cquipotent doscs.
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Standardization of Papain Activity

Report of a Collaborative Study

By EDGAR A. LAZO-WASEM

Methods of assay for the enzyme papain were
evaluated, and those endorsed are presented.
A procedure which measures the hydrolysis
of casein under standardized conditions was
found to be the method of choice.

PAPAIN, a crude or purified proteolytic enzyme
derived from the tropical plant Carica
papaya, has been used in the pharmaceutical and
food industries for over half a century. Twenty
years ago, a monograph for papain was included
in the eighth edition of the ‘National Formulary”
(1). The then official assay procedure consisted
of a limit test based on digestion of beef muscle.
After deletion of papain from the “National

Formulary,” many procedures came into use for
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After the study reported here was underway, it was
learned that efforts toward uniformity of enzymec assays,
including papain, wcre being made by the International
Comumission for the Standardization of Pharmaceutical
Enzymes, Fédération Internationale Pharmaceutique. Since
then this writer has been kept informed of the efforts of this
predominantly Europcan group, the initial studies of which
have been excellently summarized in the commission’s First
Report (6). For papain, the commission has endorsed a
method based on the initial rate of hydrolysis ol a synthetic
substrate, N-benzoyl-L-arginine ethyl ester hydrochloride,
for both crystalline papain and less purified preparations.
A comparison of the unit of activity reported here with that
adopted hy the commission will be the subject of a future
report.

the standardization of commercial papain. For
pharmaccutical and food grade papain, the most
widely used procedures have heen milk-clotting
(2), casein digestion (3), and digestion of hemo-
globin (4, 5). For crystalline papain, most
lahoratories have, at least recently, relied on the
initial rate of hydrolysis of synthetic peptide sub-
sirates such as N-benzoyl-L-arginine ethyl ester
hydrochloride.

In an attempt to bring about unification in
methods of assay throughout United States labo-
ratories, a committee was established within the
Quality Control Section of the Pharmaceutical
Manufacturers Association in the fall of 1962,
This group was to study current prevailing meth-
ods and recommend a generally acceptable
method for use throughout the industry. This
report describes the findings and recommenda-
tions of that committee.

PLAN OF STUDY AND RESULTS

Member firms of the Pharmaceutical Manufac-
turers Association, representing manufacturing sup-
pliers and pharmaceutical firms marketing papain in
dosage forms, were invited to supply their proce-
dures. The methods received involved cither milk-
clotting, casein digestion, or hemoglobin digestion.
From the procedures received, three assays based on
the above prineiples were prepared and forwarded to
eight laboratories for collaborative study. ‘‘Stand-
ard” and “unknown’’ papain preparations were also
forwarded, and thus an effort was initiated whereby





