
Statistical Procedures for Bioassays When the 
Condition of Similarity Does Not Obtain 

By C. PHILIP COX and PAUL E. LEAVERTON* 

Well-established statistical procedures are available for the analysis of dilution 
parallel line or slope ratio assays for which the condition of similarity obtains. Re- 
search scientists have long been aware that this condition is commonly violated, in 
log-dose response assays, for example, divergent rather than parallel lines may be 
obtained. The deviation cannot always be traced to deficient experimental tech- 
niques. In fact, as indications of differences in the response processes of the 
standard and test preparations, or as indications of impure test preparations, such 
findings may provide the most important inference from an assay experiment 
and immediately suggest further investigation into the causes of the differences. 
Statistical procedures have been developed to describe the phenomena in quantita- 
tive terms and, especially, to permit potency comparisons. The procedures 
may also have merit even in dilution assay situations where the condition of similarity 
may apparently be violated if appreciable differences between the responses of 

the standard and test preparations result from poorly matched doses. 

IIE TERM “analytical dilution assay” refers 
Tto an assay of a preparation of unknown po- 
tency which can be regarded as nothing but a di- 
lution of the standard preparation in a diluent 
which does not contribute to the response by 
either chemical or physical properties. In such 
cases it follows that when response is plotted 
against log-dose the curves for the two prepara- 
tions are the same apart from a constant relative 
displacement parallel to the log-dosc axis. Fur- 
thermore, as was pointed out by Gaddum (I), 
the relative potency estimate obtained from an 
analytical dilution assay should not he dependent 
on the particular assay circumsvances. The 
estimate should agree with one obtained by, for 
example, chemical determinations since both 
proecdures should give estimates of the reciprocal 
of the dilution factor. 

When the log-dose response curves arc straight 
parallel lines well-established statistical pro- 
cedures, such as those described by Bliss (2) and 
Finney ( 3 ) ,  are available for obtaining the rcla- 
tive potency estimate. Estimation procedures 
for quadratic parallel curves have been described 
by Bliss (4) and I W o n  (5). Relatedly, Leaver- 
ton (6) has discussed methods, based 011 tech- 
niques described by Lewish ( T ) ,  for fitting quad- 
ratic curves constrained to be strictly mono- 
tonic for use in bioassay contexts. 

Similar statistical procedures arc used if prallel 
log-dose response curves are obtained-for a 
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particular response-even though the inert di- 
luent assumption is not generally true. Such 
assays have been termed “comparative assays.’’ 
Since both types of assay involve comparative 
experiments, however, there are grounds for using 
the general term “assay” for either type when 
distinction is not essential, the qualification “ana- 
lytical dilution” or just “dilution” being used to 
distinguish the subclass of assays defined abovc. 

As a prerequisite for estimation of relative 
potency in the above cases, statistical analyses 
incorporate tests for the relevance or the as- 
sumed mathematical mcdel to the observed 
phenomena. In particular, an index sensitive to 
divergence, i.e., to departure froin parallelism, 
can be obtained from the sum of squares for in- 
teraction between preparations and log-doses in 
the analysis of variance. In research, as distinct 
from routine, bioassay situations it is usually not 
possible to assert that an unknown preparation is 
a dilution of the standard preparation; assays 
may, in fact, be initiated to examine just this 
question. As isolated lrorri an aniinal or plant 
organism, for example, the unknown preparation 
may consist of a mixture of substances which 
may affect the response in different degces. 
Accordingly, assay research workers, in pharma- 
cology and endocrinology, for examples, have 
long been aware that assays where divergent 
rather than parallel lines are obtained are com- 
mon, although the statistical significance of the 
divergence tcrm niay occasionally be masked 
because the assay is of low precision. 

I t  should also he remembered that except in 
the somewhat uniisual case that the log dose 
response relationship is exactly rectilinear over 
a wide rcsponsc range-as distinct from being 
approximately straight locally-it is an event with 
probability zcro that doses will be so chosen to 
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give exactly parallel lines even for an analytical 
dilution assay. 

One early idea on statistical proccdurcs ap- 
propriate for divergent line assays was put for- 
ward by Ing et al. (8), who suggested the com- 
putation of an average relative potency cleter- 
mined over awide range of doses. Later, in Gibhs 
et al. (9), an estimate of the logarithm of the rela- 
tive potency was computed at the 50% response 
level as a not strictly valid but  nevertheless use- 
ful comparison. Neither of these suggested 
procedures, however, properly incorporate thc 
basic fact that the relative potency is different 
for different doses or responses. And it was 
pointed out by Crrirnsliaw and D’Arcy (10) that  
there was then no adequate method for quanti- 
tative assessment in such situations. 

Discussions of the above introductory 1)oints 
and related statistical aspects may be found in 
Thompson (ll), Leaverton (G), Cornlield (l?), 
and Finney (13). In Cornfield (12), a procedure 
is presented for estimating the logarithm of thr 
relative potency as a function of the logdose in 
cases when linear log-dose response curves for 
both preparations can br estimated for each of a 
number of experimental subjects. Proccdures 
arc given here for divergent line assays obtained 
using the common experimental plan in which 
only one preparation-dose combinatiori is ob- 
served on each of a number of rxperiniental 
subjects. 

SPECIFICATION 

Let X.q and X T  denote log-doses of the standard 
and test preparations, respcctivcly, and let Y 
dcnote the response. 

Thcn linear log-dose response lines can be writtcn 
as, 

Y = 01s + p s x s  

I’ = a T  + PrXr  (Eq. 2) 

for t h e  staiidard and test preparations, respectively. 
The fact that, if fls # @,-, the lojiirithm of thc 

relative potcncy is a function of the ICJS-CIW~ or the 
response can now be cxpressed in any of the three 
ways A ,  B ,  and C described bclow. 

A. Linear Relation Between Equipotent Log- 
Doses.-If log-doses X,y and Xr give the same 
response, Y, Eqs. 1 and 2 show that Y S  and X T ,  arcs 
related by 

(Eq. 1) 

LYS + B S X S  = 01T + S T X T  

that is, 
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B. Log (Relative Potency) as a Linear Function 
of Log-Dose.-lf ~ ( X T )  denotes the logaritlirn of 
the relative potency at  dose XI., that is, ~ ( - Y T )  1s 
the diffcrence betweeu rquipotent log-doses, we 
have, at  log-dose XT, 

C. Log (Relative Potency) as  a Linear Function 
of Response.-If p( Y )  clcnotes the logarithm of the 
relative potcncy a t  rcsponse Y, p( Y )  is the diffcrcnce 
between equally effective log-doses so that, 

0%. 5 )  

- - - ( 2 - z )  + (&. -z.) ’ Y (Eq. 6)  

Prcscntatioii of the relations has been made in 
the above form to give esprcssions which are 
consistent with those obtaining in the usual parallel 
line assay case when 6s = $1.. 111 some applications, 
Iiowcver, prcdictions in terms of the test rather than 
the stanclard preparation may be of intercst. 
For example, it  may commonly be required to esti- 
mate the log-dose, XI., of the test preparation 
which will give a response equivalent to that ob- 
tairied with a specified log-dose, XS, of the standard. 
The cxprcssions above and their developments 
below can readily be applied in such cases by 
simply interchanging the sullixes S arid T so that 
Eq. 3,  for example, would give, 

Choice bctween the various altcrnative cxprcs- 
sioiis may, therefore, bc made according to the 
practical requirements of particular situations. 
Care, however, is required in any application bc- 
cause, apart from the simple indication that the 
test preparation is not a dilutioii nf the standard 
preparation, the equations in themsclvcs cannot 
readily be interpreted to give inforrnation about 
modes of action in a context morc general than that 
of the particular assay. Thus, although Eq. 3 
represents a calibration rclationship between equi- 
potcnt log-doses, it cannot be assumed that the 
parameters in such a relation dctcrmincd from one 
laboratory specks will remain constant for applica- 
tion to another species. In the absence of informa- 
tion about inodes of action, therefore, the relation- 
ships should preferably be rcgartlccl as c(incisr local 
descriptions of  the observed phenomena. The re- 
lations are, of course, applicable in repetitions of 
the origiual assay circumstances o f  which accurate 
and dctailed specifications are accordingly dcsirable. 
This latter aspect is particularly important for 
interlaboratory studies, as was recently eInp1iasized 
by Youclen (14). 

ESTIMATION 

Estimation proccdurcs for the above relation- 
ships w-ill first be considered for an assay in a com- 
pletely randoniizcd design in which one observation 
is obtained from cadi of N expc~iniental subjects 
and r rcsponsrs are observed a t  cach of n,s log-dose 
levels of the standard preparation and TZT log-dose 
levels ol the test preparation, so that, 

11; ~~ v(n,y + n r )  (Eq. 7 )  
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The assumptions will be made that ( a )  the log-dose 
response lines for each preparation are straight 
lincs over the range of doses tested; ( h )  residual 
errors are normally and independently distributed 
with population mean zero and variance d, this 
variance being the same for both preparations. 
The following notation will be used: 

5 

S refers to the standard and 2’ to the test 
preparation, 

xis is the ith log-dose valuc for S, i = 1, 2, . . ., ns, 
rn i~  is thejth log-dose value for T ,  j = 1, 2, . . ., n ~ ,  
yikj arid y j k ~  are the kth response observations a t  

the ith log-dose of S and the j t h  log-dose of 
T, k = 1,2,. . . ,T ,  and correspondingly 
and y j ~  are the mean responses a t  these log- 
doses. 

By regression analyses described in standard 
texts estimates, as, bs ,  U T ,  and bp,  of the regression 
paramctcrs, as, ps, a ~ ,  and PT, in Eqs. 1 and 2 are 
first calculated. Thus, for S ,  with 

I ~ r ~ ~ n =  

2 -; ?S.’T 
l u b ~ d r , S c  

s -  5 - 7 -  

- xs = - (Eq. 8 ,  Fig. 1.-The relation between equipotcnt log-doses. 

so that 9s and TT are the means of the mean re- 
sponses at the individual log-dose values, the esti- 
mates are 

as = 7s. - b@y (Eq. 10) 
ns 

z = 1  
c (xis - as)(9.s - 35s) 

(Eq. 11) bs = 

where 

?I, = 71 + ~ I ~ ( X I ,  - a r )  (Eq 16) 

is the response predicted from the line for thc test 
preparation a t  log-dose XT. A geometrical con- 
struction which illustrates how the above quantities 
are used to obtain the log-dose estimate 0.4 = X s  
from the specified value OB = XT is given in Fig 1. 

Next from Eq. 4 M(XT), the estimate of ~ ( X T )  is 
given by 

In practice, of course, b will be calculated using the 
well-known identity that for any number, n, of 
pairs (xi, yi) with means 3 and 7 ,  

wllicll lnay be written as 

1 
bs 

~ t f ( xT )  = 3s - XT - ~ x 
X ( X ~  - ?)(Ti - 7 )  = ZXY - 1 -(ZX)(ZY) (Eq. 12) {Ts - FT - b T ( X T  - 31’){ (Eq. 18) 

n 

3s - 9 T  - - IVs - XT - L - + The estimate sz  of the residual variance u2 is cal- 
culated by pooling the mean squares for deviations 
from regression obtained from the two regression 
analyses. This estimate will have N - 4 degrees of 
freedom and is compounded from the deviations of 
the mean rcsponses a t  individual log-dose levels 
and the deviatioiis between individual responses given by 
at each of the log-dose levels, a procedure which is 

Estimates of the quantities defined in the Eqs. 
3,  4, and 6 above can now be calculated as follows. 

Fror;i Eq. 3,  the estimate of the true value of 
X S  is X S  where, 

bs (2 - 1 )  ( X T  - XT) (Eq. 19) 

Third, from Eq. 6 M (  U ) ,  the estimate of p( U )  is 

1 
bsbF 

valid under the assumptions ( e )  and ( b )  above. M (  Y )  = ~ ~ x 
{a,& - a d s  - ( b T  - D S ) V }  (Eq. 20) 

or 

1 
b S b T  

f%f(Y) = 3s - ?T - - x 1 
- (as  - Q T  - ~ T X T )  2s = - (Eq. 13) 

or equivalently in terms of means as defined in 
Eqs. 8 and 9, 

h R ( T s b ~  - -VTbs - ( b ~  - b,s)p’) (Eq. 21) 

INTERVAL ESTIMATION 
OF THE EQUIPOTENT DOSE 

xs - xs = - - I x  
bs 

1 
b s  

By an adaptation of the procedure Fieller (15, 16) 
for interval estimation from a ratio, a fiducial intyr- 
val will ~ i o w  be derived for the true value of XS 
calculated from Eqs. 13 or 14 for a single specified 

{Ys - YT - ~ T ( X T  - 2 ~ ) )  (Eq. 14) 

(Es, 15) ~ (35s - 9,) - -  - 
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X T  value. 
plied to  a variate constructed as 

For this, Ficller's argument can be ap- 

u = as + bL+l's - a~ - bTX';. (Eq. 28) 

where SS is the true or population value for the 
log-dose of the standard prcparation corresponding 
to a log-dose X T  of the test prcparation. 

Under the stated assumptions, u is a linear com- 
bination of the normally distributed variates a , ~ ,  
bs, a ~ ,  and b p  and so is itself normally clistributecl. 
In virtue of Eq. 3 it is also true that  thc population 
or expected value of u is zero. It follows that,  if 
the cstimated variance of u is d,As2, where d,, is a 
known constant coeficient deterrnincd by the cori- 
struction of u from thc original observations, thc 
quantity uZ/d,,s2 is distributed according to the F 
distribution with 1 and N - 4 dcgrccs of freedom. 

Hence, if F, is the tabulated value from this 
distribution such that  

IJIF 5 Fc] = 1 - cy 

w c  have 
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Inserting thcsc valurs into Eq. 23 and collecting 
terms then gives the quadratic equation for the 
U I ~ ~ I I O W I I  X,s' 35,  

A X S ' ~  + W X s . '  + C = 0 (Eq. 30) 

where 

By Ficllcr's thcorcni i t  now follows that  solutions of 

U' - F,.d,,s2 = 0 (Bq. 23) 

which from Eq. 22 is a quadratic equation in the 
X,y correspondin,q to a given value of X T ,  will give 
values defining a loo( 1 - cy)$$, fiducial interval for 
the required X S  value. 

T o  obtain d,,, i t  is first convcnicnt t o  write PL 

from Eq. 22 in the equivalent form, 

u = 7s + b s ( X s  - 2,s) - 
Y T  - bz-(XT - T T )  (bzq. 24) 

in which all the estimates are statistically inde- 
pendent. Hcnce, 

V(U) = V[VS + b s ( S s  - as)] + 
T.'[TT + h T ( X ' T  - a T ) ]  

which can be cstimntrd as d,,s* where 

(Eq. 25) 

It is now convenient to introduce a more concise 
notation, whcrciii a prime is uscd to denote values 
"corrected for their n~cans." Thus, we w i t c  

X ' S '  = LY&' - fs ,  XT' = XT - . fT  (Rq. 26) 

and 

1 1 
( Y ~ T  - 1 . ~ ) ~  (Eq. 27) 

Then, from Eqs. 24 and 25 

u = jis - 91 + bsXs' - bTXi '  (Eq. 28) 

and 

(Eq.  31) 

By the usual formula for thc roots of a quadratic 
equation the lower arid higher limits, X J L  and X S H ,  
of the fiducial interval are then givcn by 

that  is, 

XN, = Is - 
~~ 1 

A 
I B  + d B 2  - A C ]  , 

1 
A 

X,q1, = 2,s - - {n - 

Iti practice, the computations can be simplified 
by first calculating the quantity XS' = XS - Z.7 

from the point cstimate X,Y of the equipotcnt dose, 
Thcn, substituting -h.qX,q' for yLq - - hTXr' 
in Eqs. 32 ancl 34 leads to an cxpression for the 
interval as, 

X S L ' ,  Xsn '  = - bs'Xs' =F A " 
(Eq. 37) 

By analogy with the usual calculations for 
parallel line assays [Finney (3)], an approxirnatc 
formula, which is often sufficiently accurate, can 
now be easily obtained. For this we note that the 
quantity s 2 / 2 ~ '  in Eq. 31 is the variance of bs ,  
and, if bs2 is very much larger than i ts  variance, 
z.e., if thc square of the cocflicient of variation of 
b s  is vcry small, we have, from Eq. 31 

N hs2 

As an empirical working rule, following Finney 
(3 j ,  i t  may be suggested that  thc approximation will 
give sufficiently accurate results if A/bs2  > 0.95, 
or, equivalently, if 20 F, < b&Zs'/sZ. In such cases 
i t  can easily be checked that the fiducial interval 
defined above becomes, 

XSf,, XSH = XS f 
A 



720 

TAELE I.-FOUR-POINT ASSAY OF LUTEINIZINC 

ACID DEPLETION METHOD 
HORMONE I N  SWINE PITUITARY TISSUE BY L4SCORBIC 

~- - ~~ 

, Standard ( N  I I1 )-- 7- Test-- 
0 4 111s 1 6 mg 0 0625 mg 0 2500 mg. 

77 55 64 60 
x1 45 i l  54 
80 47 70 54 
78 52 80 61 
SO 48 i 2  54 

Total 3 9 ~  24’7 357 283 
Mean 79 2 49 4 $1 4 56 6 

Jotrriial of Pharmaceutical Sciences 

nT = 2 doscs for each preparation and 7 = 5 re- 
sponses at each preparation-dose combination. 
Convcntional regression calculations, as indicated 
by Eqs 8, 9, and 11 and similar equations for the 
test preparation, thcn give 

2.7 = XT = ‘ / p  

and 

y, = (396 + 24i)/10 = 64 3 

71 = (357 + 283)/10 = 640 

Again, from Eq 27 

The fiducial intcrvals calculatcd as above apply 
when the .Ys value corresponding to only one X T  
value is rcquired. Commonly, however, the pro- 
cedure may be reqnired for an unspccificd numbcr 
of ST values. The thcoretical treatment by Scheff6 
(17) then indicatcs that the interval should be 
calculated by substituting for F,, as defined above, 
the value 4F,’ where F,‘ is the tabulated value 
from the F-distribution with 4 and iV - 4 dcgrces 
of freedom such that, 

P[F 5 F,‘] = 1 - CY 

EXAMPLE 

The data in Table I wcrc obtained from a four- 
point assay of lutcinizing hormone (LH) in 
swine pituitary tissue [Mclampy and Hendricks 
( l X ) ]  by the ascorbic acid depletion (AAD) method. 
The responses arc in units of mcg. AL4D/100 mg. 
rat ovary tissue. 

When the doscs are, as here, conveniently chosen 
so that the ratio of the higher to the lower dosc is 
the same for both prcparations, the log-dose trans- 
formations can be chosen to give a log-dose mcta- 
meter which takes simple integral values. Thus, 
in Table I, where the dose-ratio is 4, the transforma- 
tions from doscs 2.7 and ZT to metarrieters x , ~  and 
XT such that, 

1 x7, = ~ (log zT - log 0.0625) (Eq. 40) 
log 4 

give xs = X T  = 0 a t  the two lower doses and 
x,? = xT = 1 a t  the two upper doses. 

’The usual assay analysis of variance thcn gives: 

Mean 
d.f. Squares 

Divergrncc . . . . . . . . . . . . . .  . l .  . . . . .  ,281.25 

Betwren preparations. . . . . . . .  1.  . . . . . . .  .0 .45 
Co~riruori regression, . . . . . . . . .  1 . . . . .  ,2480.45 

Residual.. . . . . . . . . . . . . . . . .  . 1 H .  . . . . . .  . 1 A .  15 

Since the 01 = 0.05 critical F-valuc for 1 and 16 
degrees of frcedoni is 4.49 i t  can be seen ( a )  from 
the between preparations term that closely sitiiilar 
rcsponse lcvels werc achieved and ( b )  from the 
divergence term that the slopes of the regression 
lines for the standard and tcst prcparations wcrc 
significantly different. 

Wc are thercfore in a situation for which the 

and it follows from Eqs. 11 and 12, or bccause the 
interval between the two values of x s  is uuity, that 

bs = - ( i s 2  - 49.4) = -29.8 

and similarly, 

by = -(71.4 - .56.6) = -14.8 

Thc cquation for the prediction of an X S  value 
corresponding to a specificd X T  value can now bc 
writtcn down from Eq. 14 as 

that is, 

?,y = 0.26 + 0.50 XT (Eq. 41) 

With F, = 4.49, for 01 = 0.0c5, and s2 = 16.15 

preceding proccdurcs arc appropriate with ns = Fig. 2.--Assay of LH in swine pituitary tissuc (18). 
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for a constant nurnber Y of rcsponsc observations a t  
each prcparation-close level cornbinatiori. The ex- 
tension to the unequal numbcrs case readily follows, 

zd = 69.8% ~ (4.49)(lfj.l5) irizitntis viutandis, using tlie standard statistical 
procctlurcs for dealing wit11 uuequal numhcrs iii 

= 888.01 - 29.01 siugle classification experirrients. Additionally, as- 
says based on designs other than the completely 
randomized design can be treated by the basic = 869.03 
techniques described above. 

(16 d.f.) thc fiducial interval can now be calculated. 
For this, from Eq. 31, 

Hence, from Eq. 37 

= 1.03‘?S’ + 40.0814 (1 + 0.40 &Yl‘t + 0.42 i . P j  
(Hq.  43) 

Now, in particular, suppose it is desired to 
estimate the dose of the standard preparation 
equiv:tlerit t o  0.1 mg. of thc test preparation. 
First, from Eq. 40, the specified value of X T  is 

Hetire, from Eq. 41, 

= 0.26 + (o.so)(o.xm) = o.429.i 

and, from Eq. 39, 

log(zs/0.4) = 0.4295 log 4 

from which thc cstimatcd equipotent dose is 
A 

Z S  = 0.73 mg. 

Noting that  XT’ = 0.3390 - 0.50 = -0.1610 
and XS‘ = -0.0705, the corresponding 9557, fiducial 
interval is obtained from Eq. 43 as, 

Xsr.’, Xsii’ = -(1.03)(0.0705) f 
~‘0.0844 j li ( o . ~ t i ) c o . i e i G p o . G ~ o ~  

= -0.305, + 0.220 

Frorri Eqs. 20 arid 39 the iuterval lor the equi- 
potcnt dose can then bc calculated as 

ZSL, Z S H  = 0.48, 1.09 mg. 

Alternatively, since for these data A/b,j2 = 0.97, 
the approsimate fortnula in Eq. 38 may be used to 
give, 

X S L ,  s s i ,  = 0.4295 =F 

= 0.14, 0 . Z  

and on subtraction of X S  = 0.5,  values a.rc obtained 
which closely agree with those obtairied above for 

In this the 
width of the intcrval cstiinatc serves to cmpliasize 
the fact that  itu cxperirncnt designed to give sufli- 
cient precision for a parallel linc. assay will give 
poor precision for an estimate of an equipotcnt dose 
if divcrgencc has to be admitted as the more realistic 
situation. 

For simplicity of cspositioii, the above clcvclop- 
meiit a n d  thc cxatnple have becu carried through 

X ~ L ‘  and X,yrj’. 
The results are illustrated in Fig. 2. 

(Eq. 12 )  

QUADRATIC RESPONSE CUKVES 

The principlcs drscribcd above arc also applicable 
when oue or both of the log-dose response relation- 
ships can bc described hy quadratic curves about 
which thc responses of individual experimental 
units arc normally distributrd. A s  expected, how- 
ever, more computation is required. 

If the two quadratic relationships are 

7s nfi t b s X s  + C S X S ~  (Eq. 44) 

and 

YT = 4- ~ T S T  + CTXT* (Eq. 15) 

the log-dose of the standard prcparation equivalent 
t o  a specified log-dosc X Z ~  of thc test preparation 
can be estimated as one solution of t h e  quadratic 
equation, 

CS~?,? + hsks  + as - 

Identification of the appropriate root can be made 
without difiiculty because the two dose-response 
curves must be monotonic (though not necessarily 
in the same sense) in the region of intcrest and be- 
cause the specified X T  and its correspondent XS 
should be within the dose ranges over which the 
curves themselves werc estimated. 

In many practical cases extreme accuracy will 
not he requirrd of such estimation procedures and, 
particularly if numerous cquipotent doses are re- 
quired, i t  may be more convcnient t o  read tllctri 
from graphs of the two curves. 

Fiducial intervals for the estimate defined in 
Eq. 40 cat1 also be obtained on the above principlcs 
3s thc appropriate solutions ol Eq. 23 with u equal 
to the cupression on ttic left of Eq. 46. Solution of a 
fourth degree equation is requircd in this case. 
The interpretation of solutions of quartic equations 
in a simi1n.r inverse estimation problem has been 
discussed by Williams (19). 

a~ - b r x r  - CTXT’ = 0 (Eq. 46) 

* 

RELATIVE POTENCY 
AS A FUNCTION OF DOSE 

Divergent line assays may occur in sonic contests 
wl-icrc i t  may be of interest to cstirnatc tlie rclativc 
potency itself, although this quantity is now of 
mnre restricted use than in t h e  simplr case when i t  is 
constant. For example, if we now find that I mg. 
of the test prcparation is equipotent to p ( 1  111s.) 
of the staridard preparation i t  is no longcr true 
that 1 Gm. of the test and 1000p(l mg.) of  the 
st:audard prcp:iratioiis are equipotcnt. 
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When, however, the relative potency itself is 
rcquired i t  can be cstimated as a function of log- 
dose from Eq. 19. Since ~ ( X T )  = X S  - X T ,  where 
X S  is the equipotent log-dose of the standard 
preparation, an interval estimate for ~ ( X T )  can be 
obtained by subtracting X T  from the interval 
estimate previously determined for Xs. Alterna- 
tively, we may procccd directly by applying Ficllcr’s 
procedure, via Eq. 23 with 
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As a result if, for convenience, we write X = ~ ( X T )  - 
%s + f~ the interval can be determined by adding 
(3s - R T )  to each root of the quadratic equation 

Ax’ + 2BX + c = 0 (Bq. 48) 

where 

(Eq. 49) 

RELATIVE POTENCY 
AS A FUNCTION OF RESPONSE 

The point cstimate N( Y) of p( Y), the log relative 
potency a t  response Y can be calculated from Eq. 
21, but cxact interval estimation is not so straight- 
forward as in the previous cases. In many practical 
cases, however, it  will be sufficient to use approximate 
fiducial intervals which can be obtained as follows. 

It is a wcll-known result that, if 

is a ratio of two variates, z t  and v, which are statis- 
tically independent, and if thc cocfficient of varia- 
tion of the denominator, v, is small, then 

(coefficient of variation of Y)’ 
= (coefficicnt of variation of u ) ~  + (coefficient of variation of (Eq. 53) 

That is, if d,s2 and a,.? are the estimated variances 
of ZA and w, respectively, V ( r ) ,  the estimated variance 
of the ratio is Riven by, 

a 
V ( r )  = r2s2 (5 + 2) (Eq. 54) 

To apply this in the present context we have, 
from Eq. 21 

M ( Y )  - 3s + RT = 

The diffcrcnce bctwccn two indcpcndent ratios 
appears on the righthand side and hence 

V { M ( Y )  - 3s + %TI = 

V ( y )  + V ( 7 )  y -  3T (Eq.56) 

and now, applying Eq. 54 

us f 
I 1  

The variance of (Y - Y T ) / ~ T  can be similarly 
calculated and, on the assumption that the quantity 
A[( Y )  - 3s + ST in Eq. 55 is norrrially distributed, 
the approximate fiducial limits of p( Y) are then, 

P L (  Y), / 4 H (  Y) = %S - %T 

SLOPE RATIO ASSAYS 

Suppose that the two dose-response lines in a 

(Eq. 59) 

slope ratio assay are 

YS = as + bszs 

YT = aT + bTZT 

whcrc z s  and ZT rcprcsent doses, and the intercepts 
as and U T  are estimates of the parameters 01s and 017 
and, instead of a.7 bcing equal to O ~ T  as in the regular 
slope ratio assay case, we now have 01s # OIT. 

The dose ZS which is cquipotcnt with a specified 
dose Z T  of the test preparation is then estimated as 

US - a~ - ~ T Z T )  (Eq. 61) 

It can now be seen that this is dircctly analogous 
to Eq. 13 for the previous case, except that we 
now have doses 2 s  and Z T  instead of log-doses 
X s  and X T ,  so that mutatis mutandis, the above 
procedures can readily be applied in slope-ratio 
assay situations. 

1 
bs 

p = - ~. .  ( a s  

DISCUSSION 

Finney (1965) has recently given an intcresting 
general discussion of the role of the concept of con- 
stant relative potency, or equivalently of the con- 
dition of similarity, in bioassay. It should bc 
noted that the estimation procedures in the prescnt 
paper are referrcd to situations when the condition 
of similarity does not obtain. Such situations are 
common in research situations for which the con- 
dition would often be an unrealistically ideal assurnp- 
tion. 

Relatedly, although techniques have been prc- 
sented €or estimating relative potency as a function 
of dose (concentration) or response, i t  is considered 
that these are of less importance and value than 
those described for the estimation of equipotent 
doses. It is suggcstcd that this latter is the more 
basic concept for bioassay in general bccausc. cvcn 
when relative potency is constant, applications of its 
estimation are often, in effect, made toward de- 
terminations of cquipotent doses. 
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Standardization of Papain Activity 

Report of a Collaborative Study 

By EDGAR A. LAZO-WASEM 

Methods of assay for the enzyme papain were 
evaluated, and those endorsed are presented. 
A procedure which measures the hydrolysis 
of casein under standardized conditions was 

found to be the method of choice. 

APAIN, a crude or purified proteolytic enzyme 

pnptryu, has bccn used in the pharmaceulicd and 
food industries for over half a century. Twenty 
years ago, a monograph for papain was included 
in the eighth edition of the “National Formulary” 
(1). The then official assay procedure consisted 
of a limit test based on digestion of beef muscle. 

Aftcr deletion of papain from the “National 
Formulary,” many procedures came into use for 
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After t h e  study reported here was undei-way, i t  was 
learned tha t  efforts toward uniformity of enzymc assays, 
including papain, wcre being made by the  International 
Commission for the  Standardization of Phnrmaceutical 
Enzymes, Fkderation Internationale Pharmacriitique. Since 
then this writer has heen krpt informed of the  efforts of this 
pi-edoniinantly Eut-opcan group, the  initial studies of which 
have been excellently summarized in the  commission’s First 
Report (6). For papain. the  commission has endnrsed a 
method hased on t h e  initial ,-ate of hydt-olysis ol a synthetic 
substiate, N~benzoyl-r~~arainirie ethyl ester hydrochloride, 
for both crystnlline papain and less purified preparations. 
A comparison of the  unit of activity rrpoi-ted hcic with tha t  
a d o p t 4  hy the commission will be the subject of a futule 
report. 

Clcvcland, Ohio. 

the standardization of commercial papain. For 
pharmaceutical and food grade papain, the most 
widely used procedures have been milk-clotting 
(a), casein digestion (3), and digestion of hemo- 
globin (4, 5 ) .  For crystalline papain, most 
laboratories have, a t  least recently, relied on the 
initial rate of hydrolysis of synthetic pcptide sub- 
stratcs such as Iv-benzoyl-L-arginine ethyl ester 
hydrochloride. 

In an attempt to bring about unification in 
methods of assay throughout United States labo- 
ratories, a committee was establishctl within the 
Quality Control Section of the Pharrnaccutical 
Manufacturers Association in the fall of 1962. 
This group was to study current prevailing meth- 
ods and recommend a generally acccptable 
method for use throughout the industry. This 
report describes the findings and recomnienda- 
tions of that committee. 

PLAN OF STUDY AKD RESULTS 

Member firms of the Pharmaceutical Manufac- 
turers Association. rcprcscnting manufacturing sup- 
pliers and pharrnacrutical firms niarketing papain in 
dosage forms, were invited to supply their proce- 
dures. The methods received involvcd cither milk- 
clotting, cawin diqestinn, or hcnioglobin digestion. 
From the procedures received, three assays based on 
thc above principles wcrc prepared and forwarded to 
eiqlit laboratories for collaborative study. “Stand- 
ard” m d  “unknown” papain preparations were also 
forwarded, and thus an effort was biitiatcd whereby 




